Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water
نویسندگان
چکیده
A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery.
منابع مشابه
In Vivo Assessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment
BACKGROUND Millions of people worldwide consume arsenic-contaminated rice; however, little is known about the uptake and bioavailability of arsenic species after arsenic-contaminated rice ingestion. OBJECTIVES In this study, we assessed arsenic speciation in greenhouse-grown and supermarket-bought rice, and determined arsenic bioavailability in cooked rice using an in vivo swine model. RESU...
متن کاملFacile and Efficient Self-template Synthesis of Core-coronal-shell ZnO@ZIF-8 Nanohybrid Using Ascorbic Acid and its Application for Arsenic Removal
In the present contribution, a facile and efficient protocol for synthesis a nanohybrid structure of core-coronal-shell ZnO@ZIF-8 using ascorbic acid (ZnO@AA/ZIF-8) as a new adsorbent for arsenic removal from water has been represented. For this purpose, the ZnO nanospheres were synthesized by a green and simple method followed by coating with ascorbic acid (AA) to modify their surface to achie...
متن کاملArsenic burden of cooked rice: Traditional and modern methods.
Arsenic contamination of rice by irrigation with contaminated groundwater and secondarily increased soil arsenic compounds the arsenic burden of populations dependent on subsistence rice-diets. The arsenic concentration of cooked rice is known to increase with the arsenic concentration of the cooking water but the effects of cooking methods have not been defined. We tested the three major rice ...
متن کاملArsenic in cooked rice in Bangladesh.
In Bangladesh, rice is boiled with an excessive amount of water, and the water remaining after cooking will be discarded. We did an on-site experiment to assess the effect of this cooking method on the amount of arsenic retained in cooked rice. The concentration of arsenic in cooked rice was higher than that in raw rice and absorbed water combined, suggesting a chelating effect by rice grains, ...
متن کاملArsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh.
More and more people in Bangladesh have recently become aware of the risk of drinking arsenic-contaminated groundwater, and have been trying to obtain drinking water from less arsenic-contaminated sources. In this study, arsenic intakes of 18 families living in one block of a rural village in an arsenic-affected district of Bangladesh were evaluated to investigate their actual arsenic intake vi...
متن کامل